Friday, 29 November 2013

Holidays

Hello Everyone!

I have been on holidays for less than three hours and I am already bored so I have decided that I will defiantly write more during my so many weeks off... Nothing exciting is happening with this post, just a little note to those who are interested in what I did... I will most likely change the title of the blog, as what it currently is, was the title of the task. I have yet to decide any topics, so if you wish, put ideas in the comments if there is something in particular that you would wish me to write about. I'm thinking something along the lines of string theory and quantum physics ;)... Actually, I have no idea and don't particularly want to write about them, there is so much out there, so please do comment. I'll try to be as creative as possible.

Thank you to everyone for everything (I do love generalisations)

Enjoy :)

Emily.

Tuesday, 19 November 2013

THE END IS HERE

Hello my faithful friends and readers!

This here is just me saying good bye to you all for now, as of tomorrow, what was asked of me has to be submitted. This means, that I won't probably upload for a while yet, and the name of this thing will probably change. Knowing me, I will keep it going during the holidays. There is nothing formal about this post, it's just a sort of, goodbye, I guess you could call it (not goodbye to you, my viewers, but more of a goodbye to the stress that this blog has caused).

Earlier today, I had a little panic attack, wondering if I would get it all done in time. Turns out, I got it all done in time to write this little thing. Thank you to my teacher who was able to calm me down during class. Thanks to Mum and Dad for your support and help. Thank you to my friends, for when I got stuck on the quiz, you guys gave me stupid answers to fill in. Thanks to all my viewers for getting me exited with how successful this has been, I mean, I find this pretty special for an assignment.


Please take the quiz or at least do the Poll ==>

So thank you, everyone, and if you are lucky, I will post more. Maybe.


Enjoy :)

Emily.

Saturday, 16 November 2013

The Universe

Hello Everyone!

Today, we will go to the furthest reaches of the universe to explain how it began.

The broadly accepted theory for the origin and evolution of our universe is the Big Bang theory (not the TV show), which states that the universe began as an incredibly hot, dense point roughly 13.7 light years ago. So, how did the universe go from being a few millimetres across to what it is today? Here is a break down of the Big Bang to now in 10 (hopefully) easy-to-understand steps.


~~(10)~~
The big bang was not an explosion in space, as the theory’s name suggests. Instead, it was to appearance of space everywhere in the universe, researchers have said. According to the Big Bang theory, the universe was born as a very hot, very dense, single point in space.

Cosmologists are unsure what happened before this moment, but with sophisticated space missions, ground-base telescopes and complicated calculations, scientists have been working to paint a clearer picture of the early universe and its formation.

A key part of this comes from observations of the cosmic microwave background, which contains the afterglow of light and radiation left over from the Big Bang. This relic of the Big Bang pervades the universe and is visible to microwave detectors, which allow scientists to piece together clues of the early universe.
 
Figure 1: WMAP



In 2001, NASA launched the Wilkinson Microwave Anisotropy Probe (WMAP) mission to study the conditions as they existed in the early universe by measuring radiation from the cosmic microwave background. Among other discoveries, WMAP (figure 1) was able to determine the age of the universe – about 13.7 billion years old.


~~(9)~~
When the universe was very young – something like a hundredth of a billionth of a trillionth of a trillionth of a second – it underwent an incredible growth spurt. During this burst of expansion, which is known as inflation, the universe grew exponentially and doubled in size at least 90 times.

“The universe was expanding, and as it expanded, it got cooler and less dense,” David Spergel, a theoretical astrophysicist at Princeton University in Princeton, N.J., told SPACE.com.

After inflation, the universe continued to grow, but at a slower rate. As space expanded, the universe cooled and matter formed.


~~(8)~~
Light chemical elements were created within the first three minutes of the universe’s formation. As the universe expanded, temperature cooled and protons and neutrons collided to make hydrogen and helium.
For the first 380,000 years after the Big Bang, however, the intense heat from the universe’s creation made it essentially too hot for light to shine. Atoms crashed together with enough force to break up into a dense, opaque plasma of protons, neutrons and electrons that scattered light like fog.


~~(7)~~
About 380,000 years after the Big Bang, matter cooled enough for electrons to combine with nuclei to form neutral atoms. This phase is known as “recombination" and the absorption of free electrons caused the universe to become transparent. The light that was unleashed at this time is detectable today in the form of radiation form the cosmic microwave background.

Yet, the era of recombination was followed by a period of darkness before stars and other bright objects were formed.


~~(6)~~
Roughly 400 million years after the Big Bang, the universe began to come out of its dark ages. This period in the universe’s evolution is called the age of re-ionization.

This dynamic phase was thought to have lasted more than a half-billion years, but based on new observations, scientists think re-ionization may have occurred more rapidly than previously thought.

During this time, clumps of gas collapsed enough to form the very first stars and galaxies. The emitted ultraviolet light from these energetic events cleared out and destroyed most of the surrounding neutral hydrogen gas. The process of re-ionization, plus the clearing foggy hydrogen gas, caused the universe to become transparent to ultraviolet light for the first time.


~~(5)~~
Astronomers comb the universe looking for the most far-flung and oldest galaxies to help them understand the properties of the early universe. Similarly, by studying the cosmic microwave background (figure 2), astronomers can work backwards to piece together the event that came before.

Figure 2: Cosmic Microwave Background


Data from older missions like WMAP and the Cosmic Background Explorer (COBE), which launched in 1989, and still in operation like the Hubble Space Telescope, which launched in 1990, all help scientists try to solve the most enduring mysteries and answer the most debated questions in cosmology.


~~(4)~~
Our solar system is estimated to have been born a little after 9 billion years after the Big Bang, making it about 4.6 billion years old. According to current estimates, the sun is one of more than 100 billion stars in our Milky Way galaxy alone, and orbits roughly 25,000 light-years from the galactic core.

Many scientists think the sun and the rest of our solar system was formed from a giant, rotating cloud of dust and gas know as the solar nebula. As gravity caused the nebula to collapse, it spun faster and flattened into a disk. During this phase, most of the material was pulled toward the centre for form the sun.


~~(3)~~
In the 1960s and 1970s, astronomers began thinking that there might be more mass in the universe than what is visible. Vera Rubin, an astronomer at the Carnegie Institution of Washington, observed the speeds of stars at various locations in galaxies.
 
Figure 3: Young Vera Rubin



Basic Newtonian physics implies that stars on the outskirts of a galaxy would orbit more slowly than stars at the centre, but Rubin (figure 3) found no difference in the velocities of stars farther out. In fact, she found that all stars in a galaxy seem to circle the centre at more or less the same speed.
This mysterious and invisible mass became known as dark matter. Dark matter is inferred because of the gravitational pull it exerts on regular matter. One hypothesis states the mysterious stuff could be formed by exotic particles that don’t interact with light or regular matter, which is why it has been so difficult to detect.

Dark matter is thought to make up 23 per cent of the universe. In comparison, only 4 per cent of the universe is composed of regular matter, which encompasses stars, planets and people.


~~(2)~~
In the 1920s, astronomer Edwin Hubble made a revolutionary discovery about the universe. Using a newly constructed telescope at the Mount Wilson Observatory in Los Angeles, Hubble observed that the universe is not static, but rather is expanding.

Decades later, 1998, the prolific space telescope named after the famous astronomer, the Hubble Space Telescope, studied very distant supernovas and found that a long time ago, the universe was expanding more slowly than it is today. This discovery was surprising because it was long thought that the gravity of matter in the universe would slow its expansion, or even cause it to contract.

Dark energy is thought to be the strange force that is pulling the cosmos apart and ever-increasing speeds, but it remains undetected and shrouded in mystery. The existence of this elusive energy, which is thought to make up 73% of the universe, is one of the most hotly debated topics in cosmology.


~~(1)~~
While much has been discovered about the creation and evolution of the universe, there are enduring questions that remain unanswered. Dark matter and dark energy remain two of the biggest mysteries, but cosmologists continue to probe the universe in hopes of better understanding how it all began.


Figure 4: Timeline of the universe

Answers to previous research questions:
  1. Maffei 1
  2. C96 - Open Cluster, NGC5139 - Globular Cluster, NGC2354 - Open Cluster
  3. Both Spiral Galaxies, Mass, Age, travelling at the same speed - 200km per second, on a collision course with each other.
  4. Draco Dwarf (Elliptical), Sculptor Dwarf (Irregular), Fornax Dwarf (Elliptical), Leo I (Elliptical), Ursa Minor Dwarf (Elliptical).

Research Questions: 
  1. What is the Grand Unification Epoch (as shown in figure 4)
  2. What is dark matter?

Q:What kind of music do planets sing?
A: Neptunes

Enjoy :)

Emily.